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H. ter Morsche [12] presented a unified theory of interpolation by periodic
splines of degree m on a uniform mesh with mesh size h = l/n. He obtained error
bounds of the form II D'f - Dr¢1I 00":;; Khm- r IIDmfll 00 (0":;; r < m) for fE cm(lR) such
that Dj"(O)=D1(1) (O":;;j":;;m), i.e., fEC'[;. This extends results of Quade and
Collatz [13] and Subbotin [14]. We will establish error estimates of the form

(O":;;r":;;m)

for f E C'[; + 1. This generalizes special results of Dubeau and Savoie [5, 6] to
arbitrary degree m. © 1988 Academic Press, Inc.

1. BASIC DEFINITIONS AND RESULTS

Let

be a uniform subdivision of the interval [0, 1], i.e.,

(1.1 )

y;= ih, h = lin (i= 0, ..., n). (1.2)

The complex linear space of periodic spline functions of degree m with
spline knots y j = iln (i E 7L) is denoted by So(m, n). c~ will stand for the class
of functions feCk (lR) satisfying D j f(O)=D j f(l) (j=O, ...,k). It was
shown by ter Morsche that if a spline function ¢J e So(m, n) interpolates a
given function f E C(IR) with period I at the interpolation points

Xj=y;-Ah (O~A<I;iE7L)
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then it is necessary that the parameters

(1.4)

satisfy a linear system of equations called working equations. Denote by A
the forward difference operator defined by

AF(x) = F(x +h) - F(x). (1.5)

THEOREM 1.1 [12]. Let f be a function with period 1. If the linear
system

m ( r "(m+ 1) )L Mi-l+rL (-1)1 . (r-j+}.)m/m!
r~O J=O )

=hl-mAm-If(x;) (i=1, ...,n) (1.6)

in the unknowns M o' M I , ... , M n_ l , where Mn+k=Mkfor all keZ, has a
unique solution

then there exists a unique spline ¢J e So(m, n) with

(1.7)

¢J(x;) = f(xJ (i= 1, ..., n). (1.8 )

Remark. Equations (1.6) are called working equations.

We assume n > m. If we set

the working equations can be put into the form

AM=d,

(1.9)

(r=O, ...,n-l) (1.10)

(1.11)

where A is the n x n circulant matrix C(ao, aJ> ..., an _ d:

Note that

(1.12)

ar=O (r >m). (1.13)
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Let the polynomial Pm(z) = Pm(z, A) be defined by

m

Pm(z, A) = L a,z'.
,=0

Using the special circulant

Q = qo, 1,0, ...,0),

one obtains

m

A=Pm(Q,A)= L a,Q',
,~o

The matrix Q has the n distinct eigenvalues
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(1.14)

(1.15)

(1.16)

Wk =exp(2nki/n) (k = 0, ..., n - 1). (1.17)

Consequently, the eigenvalues of A are given by

(k= 1, ..., n). (1.18)

If none of the eigenvalues Ak is equal to zero, then the working equations
have exactly one solution and spline interpolation is possible in view of
Theorem 1.1. This observation leads to the investigation of the generalized
Euler-Frobenius polynomial Pm(z, A) [10,12]. As a consequence the
following result holds.

THEOREM 1.2 [12]. Let there be given a uniform subdivision Y i = i/n
(i E 1') together with a periodic function f with period 1. Furthermore, let the
interpolation points Xi' iE1', be defined as Xi= Yi-Ah (O:::;A< 1). Then
there exists a uniquely determined periodic spline function ~ E So(m, n) with
the interpolation properties

(i = 1, .." n) (1.19)

in each of the following cases when Pm( -1, A) 01= 0:

(i) n=2s+ 1 is odd.

(ii) m = 2r + 1 is odd and A 01= !.
(iii) m = 2r is even and A 01= O. (1.20)

Remark. Case (i) and case (ii), A= 0, were proved by Quade and
Collatz [13]. Case (iii), A=!, was proved by Subbotin [14]. The complete
discussion was carried out by ter Morsche [12].
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2. THE CONVERGENCE THEOREM

In order to establish a convergence theorem we need some properties of
the matrix A established by ter Morsche [12]. Let B be a n x n matrix and
let the norm of the space of n-tuples x = (x" ..., x n ) be the sup-norm, i.e.,

Ixl = sup Ix;!'
1 ~i~n

Then the induced norm of the matrix B is the row-maximum-norm:

n

IBI = sup L Ibi/I·
l~i~nj=l

Let the numbers A and m be given such that

(2.1 )

(2.2)

(2.3)

Then A = Pm(Q, A) has an inverse A -I and interpolation in So(m, n) at the
points Xi = (i - A)/n (i E 2) is possible. It was shown by ter Morsche [12]
that the polynomial Pm(z, A) has m distinct nonpositive roots:

Pm(z, A) = am(z + ZI)(Z + zz) .. · (z + zm),

O=ZI <zz < .,. <Zj< 1 <Zj+1 < .. , <zm' (2.4)

Using the Laurent series of I/Pm(z, A) in jz) < Izj < IZj+11 ter Morsche
[12] established the estimate:

(2.5)

It is of basic importance that the right-hand side of (2.5) is independent of
n. Moreover, we need the following properties of Pm(z, A) [12]:

n-I

L a r = 1,
r~ 0

(r = 0, ..., n - 1). (2.6)

THEOREM 2.1. Let the numbers A and m be given such that

(2.7)

Assume that f E CO' + 1 and let ¢J E So(m, n) be the interpolating spline
function satisfying

(i=I, ...,n), (2.8)
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where x; = (i - A)jn. Then we have the error estimates
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IIDrq,-D'f11 OCJ ~K(~)m+ I~r IIDm + IIII OCJ

where the constant K depends on m and A.

Proof We recall the working equations

(r = 0, ..., m), (2.9)

with

n-I

L arM;_'+r=di
r=O

(i=1, ...,n) (2.10)

(2.11 )

Since I and q, have period 1 the relations (2.10) and (2.11) hold for all
integers i, j. We set

e j = (di + 1 - d;)jh (2.12 )

and obtain from (2.10) by subtracting members of each equation from
corresponding members of its successor the equations

n-I

L arNi-l+r=ei
r=O

(i= 1, ..., n). (2.13 )

Thus, if A = Pm(Q, A) = C(ao, ai' ..., an_ d and

we have

(2.14 )

A(N-e)=(l-A)e =: F

with

Since

(2.15 )

(2.16)

we obtain

n-I

Fj=ei - L are i+r
r=O

(iE Z)

U=I, ... ,n).

(2.17)

(2.18 )
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Taking into account (2.6) and (1.13) we get

m

F;= L ar(e;-e;+r)
r=1

(i= 1, ..., n). (2.19)

Since

there are real numbers U; satisfying

(i= 1, ..., n). (2.21 )

Then we have

le;-e;+rl = IDmf(u;)-Dmf(u;+r)1

~ W ( D
m

J, ~ 2m).

I.e.,

(2.22)(i= 1, ..., n; r= 1, ..., m),le;-e;+rl ~2mw (DmJ,~)

where w(DmJ, lin) denotes the modulus of continuity of Dmf Now it
follows from (2.22), (2.19), and (2.6) that

IFI ~ 2mw (DmJ,~).

Since A(N-e)=Fwe obtain from (2.5) and (2.23)

(2.23 )

(2.24)

For X;-l <X<X; we have

IDmqj(x)~e;1 = IN;_I-e;1

in view of Dmqj(x) = (M j - M j _ dlh. It follows from (2.21) that

(2.25)

which implies
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Taking into account (2.24), (2.25), and (2.26) we can conclude for
X i - 1 <X<X;,

IDm~(x)-Dmf(x)1~ IDm~(x)-e;1+ IDmf(x)-e;1

~w (Dmj,~) «m+ 1) +2m/IPm( -1, A)I)

which implies

(2.27)

where the constant K depends only on m and A. For f E C'l)+ 1 we obtain
from (2.27)

(2.28 )

This establishes the estimate (2.9) for r = m. By integration and the inter­
polation property of ~ the estimates for smaller values of r may be
established in the usual manner.

The error estimates of Theorem 2.1 were proved by Ahlberg, Nilson, and
Walsh [1 J for the case m =2r + 1, A=0 (see also Golomb [7J who
investigated also the mean square error). The cases m = 2, 4; A=0;
n = 2s + 1 were proved by Dubeau and Savoie [5,6]. Theorem 2.1 shows
that these special cases extend to all periodic interpolating splines on
uniform meshes which include in particular Subbotin's midpoint splines of
even degree.

3. CONSTRUCTION OF THE INTERPOLANT

Let Bq(t) denote the Bernoulli function of degree q. Its Fourier series is
given by

Bit) = L (27tir)-q exp(27tirt).
Irl >0

(3.1 )

Bq( t) is a polynomial of degree q in 0 < t < 1 which can be constructed by
the recursion

(3.2)

640/53/2-8
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Using a result of Wegner [15J we have shown in [4J that the function M
defined by

M(t)=J-h- m- 1 mfl (m-:1)(_J)m+l-jBm+I(Yf_t) (3.3)
j=O J

is the I-periodic B-spline of degree m with knots Yo, ..., Ym + I. It is well
known [9J that the spline space So(m, n) (n > m) is spanned by the trans­
lates of M:

So(m, n)= lin{M(· - Yj): j=O, ..., n-l}. (3.4)

We will show that a modification of the method of interpolation by trans­
lation [2, 3, 8] yields a construction of the spline interpolant ¢J of f. It
follows from (3.4) and Theorem 1.2 that there exist unique 00' .•., On _ I such
that

n-l

t/J(t)= L ajM(t- Yj)
j=O

and

(3.5)

(k = 1, ..., n). (3.6)

Recall that

(h = lin; 0 ~ A< 1). (3.7)

We introduce the functions

t/J(t) = ¢J(t - Ah), g(t) =I(t - Ah),

N(t) =M(t - Ah).

Then the shifted spline t/J is the unique function in

lin {N( . - Yj): j = 0, ..., n - 1}

such that

(3.8)

(3.9)

(k =0, ... , n -1). (3.10)

Thus, the method of interpolation by translation is applicable. We list the
corresponding formulas:

n-I

bk = I N( ~y) exp(2niky),
f=O

n-I

Ck = (lin) I exp(2nijYk)/bj ,

j=O

n--l

Ok = L cjg(Yk_j)·
j=O

(3.1 1)
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As an example we consider the function

f(t) = sin(sin(2nt)).

229

We computed the discrete maximum norm of the error function f - ifJ at
the mesh j/30 (j = 1, ..., 29):

1.11445E - 02 4

1.84359E-02 8

4.30828E - 03 12

1.08194£ - 03 16

7.94917E - 04 20

II f - ifJll ()) for ifJ E 8 0(2, n) (n =4,8, 12, 16,20; A=0.25);

9.18536E - 02 4

1.00384£ - 02 8

1.10123E - 03 12

2.oo838E - 04 16.

II f - ifJll 00 for ifJ E 80(3, n) (n =4,8, 12, 16; A=0.25).

Remark. An alternative construction of periodic interpolating splines of
arbitrary degree is given by Merz [11].
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